Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.351
Filtrar
1.
Sci Transl Med ; 16(744): eadk3259, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657027

RESUMO

Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection even in previously exposed individuals. In addition, for some pathogens, such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease through a mechanism known as antibody-dependent enhancement. However, it remains unclear whether the antigenic distances between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalizations across years. Here, we develop a framework that combines detailed antigenic and genetic characterization of viruses with details on hospitalized cases from 21 years of dengue surveillance in Bangkok, Thailand, to identify the role of the antigenic profile of circulating viruses in determining disease risk. We found that the risk of hospitalization depended on both the specific order of infecting serotypes and the antigenic distance between an individual's primary and secondary infections, with risk maximized at intermediate antigenic distances. These findings suggest that immune imprinting helps determine dengue disease risk and provide a pathway to monitor the changing risk profile of populations and to quantifying risk profiles of candidate vaccines.


Assuntos
Antígenos Virais , Vírus da Dengue , Dengue , Humanos , Dengue/imunologia , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/imunologia , Antígenos Virais/imunologia , Tailândia/epidemiologia , Fatores de Risco , Hospitalização
3.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde | ID: lis-49559

RESUMO

Desde quinta, o Ministério da Saúde já faz a distribuição dos imunizantes aos municípios(https://www.gov.br/saude/pt-br/assuntos/noticias/2024/fevereiro/ministerio-da-saude-inicia-distribuicao-de-vacinas-contra-dengue) que atendem aos critérios definidos em conjunto com os conselhos de Secretários de Saúde (Conass) e de Secretarias Municipais de Saúde (Conasems). A estratégia se soma aos esforços coletivos de prevenção e combate ao mosquito, essenciais para controle da doença.


Assuntos
Dengue/imunologia , Programas de Imunização
5.
J Virol ; 97(11): e0074623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855600

RESUMO

IMPORTANCE: CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.


Assuntos
Linfócitos T CD8-Positivos , Dengue , Humanos , Linfócitos T CD8-Positivos/imunologia , Citocinas , Dengue/genética , Dengue/imunologia , Dengue/patologia , Interferon gama/genética , Febre/virologia , Subpopulações de Linfócitos T/imunologia
6.
mBio ; 14(5): e0093423, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732809

RESUMO

IMPORTANCE: One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.


Assuntos
Vírus da Dengue , Estresse Fisiológico , Replicação Viral , Zika virus , eIF-2 Quinase , Animais , Humanos , Células A549 , Chlorocebus aethiops , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/fisiologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Deleção de Genes , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia , Células Vero , Replicação Viral/genética , Replicação Viral/imunologia , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , RNA de Cadeia Dupla/metabolismo
8.
Viral Immunol ; 36(2): 101-109, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862827

RESUMO

Dengue virus (DENV) is the etiological agent of dengue, the most important mosquito-transmitted viral disease of humans worldwide. Enzyme-linked immunosorbent assays (ELISAs) designed to detect DENV IgM are commonly used for dengue diagnosis. However, DENV IgM is not reliably detected until ≥4 days after illness onset. Reverse transcription-polymerase chain reaction (RT-PCR) can diagnose early dengue but requires specialized equipment, reagents, and trained personnel. Additional diagnostic tools are needed. Limited work has been performed to determine whether IgE-based assays can be used for the early detection of vector-borne viral diseases, including dengue. In this study, we determined the efficacy of a DENV IgE capture ELISA for the detection of early dengue. Sera were collected within the first 4 days of illness onset from 117 patients with laboratory-confirmed dengue, as determined by DENV-specific RT-PCR. The serotypes responsible for the infections were DENV-1 and DENV-2 (57 and 60 patients, respectively). Sera were also collected from 113 dengue-negative individuals with febrile illness of undetermined etiology and 30 healthy controls. The capture ELISA detected DENV IgE in 97 (82.9%) confirmed dengue patients and none of the healthy controls. There was a high false positivity rate (22.1%) among the febrile non-dengue patients. In conclusion, we provide evidence that IgE capture assays have the potential to be explored for early diagnosis of dengue, but further research is necessary to address the possible false positivity rate among patients with other febrile illnesses.


Assuntos
Anticorpos Antivirais , Dengue , Ensaio de Imunoadsorção Enzimática , Imunoglobulina E , Animais , Humanos , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade , Sorogrupo , Dengue/diagnóstico , Dengue/imunologia , Imunoglobulina E/imunologia , Reações Falso-Positivas
9.
J Gen Virol ; 104(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748518

RESUMO

The lncRNA NEAT1 plays a vital role in mitochondrial function and antiviral response. We have previously identified NEAT1 as dysregulated lncRNAs and found an inverse correlation with interferon alpha-inducible protein 27 (IFI27) expression associated with developing dengue severity. However, the role of NEAT1 in dengue virus (DV) infection remains elusive. Here, we undertook a study to evaluate the functional consequences of NEAT1 and IFI27 modulation on antiviral response and viral replication in dengue infection. We observed that the knockdown of NEAT1 augmented IFI27 expression and antiviral response via the RIG-I pathway. Increased antiviral response leads to a decrease in dengue viral replication. Further study suggested that the knockdown of IFI27 augmented expression of the activating transcription factor 3 (ATF3), a negative regulator of antiviral response, and increased dengue virus replication suggesting an important role played by IFI27 in mediating antiviral response. RNA sequencing study confirmed several mitochondrial genes significantly altered upon knockdown of NEAT1 in DV-infected cells. We further verified the effect of NEAT1 knockdown on mitochondrial functions. We observed a reduced level of phospho-DRP1(S616) expression along with elongated mitochondria in DV2-infected cells. Further, NEAT1 knockdown or ectopic expression of IFI27 increased mitochondrial ROS production and cell death via activation of caspase 3. Our study points to the crucial role of NEAT1 and IFI27 in mediating antiviral response and mitochondrial dysfunction in dengue infection.


Assuntos
Dengue , Proteínas de Membrana , RNA Longo não Codificante , Humanos , Dengue/imunologia , Vírus da Dengue/fisiologia , Replicação Viral , Proteínas de Membrana/imunologia , RNA Longo não Codificante/imunologia
10.
Pathog Glob Health ; 117(2): 167-180, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35850625

RESUMO

Dengue disease caused by dengue virus (DENV) infection is the most common vector-borne viral disease worldwide. Currently, no treatment is available to fight dengue symptoms. We and others have demonstrated the antiviral and immunomodulatory properties of VitD3 as a possible therapy for DENV infection. MicroRNAs (miRNAs) are small non-coding RNAs responsible for the regulation of cell processes including antiviral defense. Previous transcriptomic analysis showed that VitD3 regulates the expression of genes involved in stress and immune response by inducing specific miRNAs. Here, we focus on the effects of VitD3 supplementation in the regulation of the expression of inflammatory-liked miR-182-5p, miR-130a-3p, miR125b-5p, miR146a-5p, and miR-155-5p during DENV-2 infection of monocyte-derived macrophages (MDMs). Further, we evaluated the effects of inhibition of these miRNAs in the innate immune response. Our results showed that supplementation with VitD3 differentially regulated the expression of these inflammatory miRNAs. We also observed that inhibition of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p, led to decreased production of TNF-α and TLR9 expression, while increased the expression of SOCS-1, IFN-ß, and OAS1, without affecting DENV replication. By contrast, over-expression of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p significantly decreased DENV-2 infection rates and also DENV-2 replication in MDMs. Our results suggest that VitD3 immunomodulatory effects involve regulation of inflammation-linked miRNAs expression, which might play a key role in the inflammatory response during DENV infection.


Assuntos
Dengue , Macrófagos , MicroRNAs , Vitamina D , Humanos , Dengue/imunologia , Vírus da Dengue , Regulação da Expressão Gênica , Macrófagos/imunologia , Macrófagos/virologia , MicroRNAs/genética , Replicação Viral , Vitamina D/farmacologia
12.
Viruses ; 14(5)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35632732

RESUMO

Dengue is a mosquito-borne viral disease caused by the dengue virus (DENV1-4). The clinical manifestations range from asymptomatic to life-threatening dengue hemorrhagic fever (DHF) and/or Dengue Shock Syndrome (DSS). Viral and host factors are related to the clinical outcome of dengue, although the disease pathogenesis remains uncertain. The innate antiviral response to DENV is implemented by a variety of immune cells and inflammatory mediators. Blood monocytes, dendritic cells (DCs) and tissue macrophages are the main target cells of DENV infection. These cells recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Pathogen recognition is a critical step in eliciting the innate immune response. Toll-like receptors (TLRs) are responsible for the innate recognition of pathogens and represent an essential component of the innate and adaptive immune response. Ten different TLRs are described in humans, which are expressed in many different immune cells. The engagement of TLRs with viral PAMPs triggers downstream signaling pathways leading to the production of inflammatory cytokines, interferons (IFNs) and other molecules essential for the prevention of viral replication. Here, we summarize the crucial TLRs' roles in the antiviral innate immune response to DENV and their association with viral pathogenesis.


Assuntos
Dengue , Imunidade Inata , Moléculas com Motivos Associados a Patógenos , Receptores Toll-Like , Dengue/imunologia , Vírus da Dengue , Humanos , Moléculas com Motivos Associados a Patógenos/imunologia , Receptores Toll-Like/imunologia
13.
Rev. Ciênc. Méd. Biol. (Impr.) ; 21(1): 40-45, maio 05,2022. fig
Artigo em Português | LILACS | ID: biblio-1370563

RESUMO

Introduction: dengue is a most common mosquito-borne viral disease in the Americas and tropical countries. Objective: in this work, mice were hyperimmunized with DENV 4 antigen to produce monoclonal antibodies (mAbs). Methodology: DENV 4 (GenBank KC806069) was inoculated in C6/36 cell monolayers cultivated in Leibovitz's 15 medium supplemented with 5% fetal bovine serum and incubated at 28 oC. The virus stock was submitted to concentration and ultracentrifugation and stored at -80 oC until use (VC DENV 4). Balb/c mice were injected intraperitoneally with 50µg of DENV-4 and successive intraperitoneal injections of 25 µg of VCDENV 4 with Freund's incomplete adjuvant were performed. The spleen cells were fused to SP2/0 myeloma cells with PEG 1540 and distributed in 96-well microplates with Iscove's modified medium with Hipoxantina­Aminopterina­Timidina. Hybridoma screening by indirect ELISA showed positive results for six mAbs, and their characterization was performed by Western blotting and Indirect Immunofluorescence (IFI) techniques. Results: the six mAbs showed strong recognition of prM (24/29 kDa), and minor reaction to E protein (66 kDa), E/E protein dimer (105 kDa), and NS1 (49 kDa) protein in two mAbs. The use of mAbs anti-prM as a diagnostic tool using IFI has been demonstrated to detect DENV-4 antigen in infected cells or tissues. Conclusion: DENV 4 generate mAbs with strong reactivity to prM with potential use to confirm the presence of DENV 4 antigen in tissues or infected cells.


Introdução: a dengue é uma doença viral transmitida por mosquitos comumente das Américas e países tropicais. Objetivo: neste trabalho, camundongos foram hiperimunizados com antígeno DENV 4 para produzir anticorpos monoclonais (mAbs). Metodologia: DENV 4 (GenBank KC806069) foi inoculado em monocamadas de células C6 / 36 cultivadas em meio Leibovitz 15 suplementado com 5% de soro fetal bovino e incubadas a 28oC. O estoque viral foi submetido à concentração, ultracentrifugação e armazenado a -80 oC (VC DENV 4). Camundongos Balb / c foram injetados intraperitonealmente com 50 µg de VC DENV-4 e injeções intraperitoneais sucessivas de 25 µg de antigeno com adjuvante incompleto de Freund. As células do baço foram misturadas a células SP2/0 com PEG 1540 e distribuídas em microplacas de 96 poços com meio Iscove Modificado em presença de Hipoxantina ­ Aminopterina ­ Timidina. A triagem de hibridomas por ELISA indireto apresentou resultados positivos para seis mAbs, e sua caracterização foi realizada por técnicas de Western blotting e Imunofluorescência Indireta (IFI). Resultados: os seis mAbs mostraram forte reconhecimento de prM (24/29 kDa) e reação menor à proteína E (66 kDa), dímero de proteína E / E (105 kDa) e proteína NS1 (49 kDa) em dois mAbs. O uso de mAbs anti-prM como uma ferramenta de diagnóstico utilizando IFI demonstrou eficacia em detectar o antígeno DENV-4 em células ou tecidos infectados. Conclusão: o mAbs produzidos para DENV 4 demonstraram uma forte reatividade contra prM, e poderiam ser uma ferramenta de uso potencial no diagnóstico de DENV 4 .


Assuntos
Animais , Camundongos , Dengue/imunologia , Vírus da Dengue/imunologia , Anticorpos Monoclonais/biossíntese , Antígenos Virais/administração & dosagem , Injeções Intraperitoneais , Camundongos Endogâmicos BALB C
14.
Antiviral Res ; 202: 105312, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395274

RESUMO

INTRODUCTION: Dengue virus (DENV) NS1 is a non-structural secretory protein associated with severe disease and known to cause vascular leak leading to dengue haemorrhagic fever (DHF). As phospholipases A2 (PLA2) enzymes, platelet activating factor, and leukotrienes are elevated in dengue, we sought to investigate whether NS1 potentially contributes to disease pathogenesis by inducing PLA2s. METHODS: THP-1 cells and primary human monocytes of healthy adults (n = 6) were co-cultured with DENV1 NS1, LPS and media alone. The latter two were used as positive and negative controls. The cell culture supernatants and lysates were harvested at 12 and 24 h and the activity of secretory and cytoplasmic PLA2, prostaglandins (PGE2 and PGD2) were measured by ELISA and cytokines levels were measured using a magnetic Luminex assay. Expression of PLA2G4A, PLA2G2A, PLA2G5, PLA2G10, PLA2G7, GAPDH, NLRP3 and DDX58 genes were assessed using quantitative RT-PCR. RESULTS: cPLA2 (p = 0.005), sPLA2 (p = 0.04), PGE2 metabolite (p = 0.02) and PGD2 metabolite (p = 0.04) levels were significantly higher at 12 h in monocytes co-cultured with NS1. Levels of IP-10 (p = 0.005) and IL-10 (p = 0.009) was significantly higher at 24 h, whereas IFNα level was significantly higher (p = 0.013) only at 12 h. IL-1ß (p = 0.028 and p = 0.031) and TNFα (p = 0.007 and p = 0.011) showed significantly higher levels at both time points. At 12 h significant upregulation of PLA2G4A (p < 0.0001) was seen, whereas PLA2G7 (p = <0.0001), NLRP3 (p = 0.0009) and DDX58 (p = 0.0056) were significantly downregulated. This pattern changed at 24 h with PLA2G4A (p = 0.0069) showing a marked downregulation and PLA2G7, DDX58 and NLRP3 showing an upregulation, although not significant. CONCLUSION: Dengue NS1 induces the production of PLA2 enzymes, prostaglandins and inflammatory cytokines from primary human monocytes, which could play a role in vascular leak in dengue.


Assuntos
Citocinas , Dengue , Fosfolipases A2 , Proteínas não Estruturais Virais , Adulto , Citocinas/metabolismo , Dengue/imunologia , Vírus da Dengue/genética , Humanos , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfolipases A2/metabolismo , Prostaglandinas/metabolismo , Prostaglandinas E/metabolismo , Proteínas não Estruturais Virais/genética
15.
Front Immunol ; 13: 810376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185902

RESUMO

Exacerbated inflammatory response and altered vascular function are hallmarks of dengue disease. Reactive oxygen species (ROS) production has been associated to endothelial barrier disturbance and microvascular alteration in distinct pathological conditions. Increased ROS has been reported in in vitro models of dengue virus (DENV) infection, but its impact for endothelial cell physiology had not been fully investigated. Our group had previously demonstrated that infection of human brain microvascular endothelial cells (HBMEC) with DENV results in the activation of RNA sensors and production of proinflammatory cytokines, which culminate in cell death and endothelial permeability. Here, we evaluated the role of mitochondrial function and NADPH oxidase (NOX) activation for ROS generation in HBMEC infected by DENV and investigated whether altered cellular physiology could be a consequence of virus-induced oxidative stress. DENV-infected HBMECs showed a decrease in the maximal respiratory capacity and altered membrane potential, indicating functional mitochondrial alteration, what might be related to mtROS production. Indeed, mtROS was detected at later time points after infection. Specific inhibition of mtROS diminished virus replication, cell death, and endothelial permeability, but did not affect cytokine production. On the other hand, inhibition of NOX-associated ROS production decreased virus replication and cell death, as well as the secretion of inflammatory cytokines, including IL-6, IL-8, and CCL5. These results demonstrated that DENV replication in endothelial cells induces ROS production by different pathways, which impacts biological functions that might be relevant for dengue pathogenesis. Those data also indicate oxidative stress events as relevant therapeutical targets to avoid vascular permeability, inflammation, and neuroinvasion during DENV infection.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Endotélio Vascular/virologia , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/genética , Endotélio Vascular/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
16.
Viruses ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35215836

RESUMO

Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.


Assuntos
Febre de Chikungunya/imunologia , Dengue/imunologia , Linfócitos T/imunologia , Infecção por Zika virus/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Febre de Chikungunya/terapia , Vírus Chikungunya/imunologia , Reações Cruzadas , Dengue/terapia , Vírus da Dengue/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Desenvolvimento de Vacinas , Vacinas Virais , Zika virus/imunologia , Infecção por Zika virus/terapia
17.
Viruses ; 14(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35062294

RESUMO

According to the WHO 2009 classification, dengue with warning signs is at the risk of developing severe form of dengue disease. One of the most important warning signs is plasma leakage, which can be a serious complication associated with higher morbidity and mortality. We report that the frequency of CD4+CD8+ double-positive (DP) T cells is significantly increased in patients at risk of developing plasma leakage. Transcriptomic analysis demonstrated that CD4+CD8+ DP cells were distinct from CD4+ Single Positive (SP) T cells but co-clustered with CD8+ SP cells, indicating a largely similar transcriptional profile. Twenty significant differentially expressed (DE) genes were identified between CD4+CD8+ DP and CD8+ SP cells. These genes encode OX40 and CCR4 proteins as well as other molecules associated with cell signaling on the cell surface (NT5E, MXRA8, and PTPRK). While comparing the profile of gene expression in CD4+CD8+ DP cells from patients with and without warning signs of plasma leakage, similar expression profile was observed, implying a role of CD4+CD8+ DP cells in plasma leakage through a quantitative increase rather than functional alteration. This study provided novel insight into the host immune response during the acute febrile phase of DENV infection and the role of CD4+CD8+ DP T cells in the pathogenesis of plasma leakage.


Assuntos
Dengue/sangue , Dengue/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Contagem de Linfócitos , Masculino , Plasma , Dengue Grave/sangue , Dengue Grave/imunologia , Subpopulações de Linfócitos T/imunologia , Transcriptoma , Adulto Jovem
18.
Viruses ; 14(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062334

RESUMO

γδ T cells are innate cells able to quickly eliminate pathogens or infected/tumoral cells by their antiviral and adjuvancy activities. The role of γδ T cells during Dengue Viral Infection (DENV) infection is not fully elucidated. Nevertheless, human primary γδ T cells have been shown to kill in vitro DENV-infected cells, thus highlighting their possible antiviral function. The aim of this work was to characterize the phenotype and function of Vδ2 T cells in DENV patients. Fifteen DENV patients were enrolled for this study and peripheral blood mononuclear cells (PBMC) were used to analyze Vδ2-T-cell frequency, differentiation profile, activation/exhaustion status, and functionality by multiparametric flow cytometry. Our data demonstrated that DENV infection was able to significantly reduce Vδ2-T-cell frequency and to increase their activation (CD38 and HLA-DR) and exhaustion markers (PD-1 and TIM-3). Furthermore, Vδ2 T cells showed a reduced capability to produce IFN-γ after phosphoantigenic stimulation that can be associated to TIM-3 expression. Several studies are needed to depict the possible clinical impact of γδ-T-cell impairment on disease severity and to define the antiviral and immunoregulatory activities of γδ T cells in the first phases of infection.


Assuntos
Dengue/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interferon gama/metabolismo , Linfócitos Intraepiteliais/imunologia , Adaptação Fisiológica , Adulto , Citometria de Fluxo , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Imunidade Inata , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia
19.
Emerg Microbes Infect ; 11(1): 227-239, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34931940

RESUMO

Dengue is caused by four genetically distinct viral serotypes, dengue virus (DENV) 1-4. Following transmission by Aedes mosquitoes, DENV can cause a broad spectrum of clinically apparent disease ranging from febrile illness to dengue hemorrhagic fever and dengue shock syndrome. Progress in the understanding of different dengue serotypes and their impacts on specific host-virus interactions has been hampered by the scarcity of tools that adequately reflect their antigenic and genetic diversity. To bridge this gap, we created and characterized infectious clones of DENV1-4 originating from South America, Africa, and Southeast Asia. Analysis of whole viral genome sequences of five DENV isolates from each of the four serotypes confirmed their broad genetic and antigenic diversity. Using a modified circular polymerase extension reaction (CPER), we generated de novo viruses from these isolates. The resultant clones replicated robustly in human and insect cells at levels similar to those of the parental strains. To investigate in vivo properties of these genetically diverse isolates, representative viruses from each DENV serotype were administered to NOD Rag1-/-, IL2rgnull Flk2-/- (NRGF) mice, engrafted with components of a human immune system. All DENV strains tested resulted in viremia in humanized mice and induced cellular and IgM immune responses. Collectively, we describe here a workflow for rapidly generating de novo infectious clones of DENV - and conceivably other RNA viruses. The infectious clones described here are a valuable resource for reverse genetic studies and for characterizing host responses to DENV in vitro and in vivo.


Assuntos
Vírus da Dengue/genética , Vírus da Dengue/imunologia , Dengue/virologia , Aedes/fisiologia , Aedes/virologia , Animais , Anticorpos Antivirais/imunologia , Variação Antigênica , Dengue/genética , Dengue/imunologia , Dengue/transmissão , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Variação Genética , Humanos , Imunoglobulina M/imunologia , Camundongos , Camundongos Knockout , Genética Reversa , Sorogrupo
20.
Jpn J Infect Dis ; 75(2): 140-143, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-34470970

RESUMO

From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain.


Assuntos
Aedes , Vírus da Dengue , Dengue , Surtos de Doenças , Wolbachia , Aedes/genética , Aedes/virologia , Infecções por Anaplasmataceae/microbiologia , Infecções por Anaplasmataceae/virologia , Animais , Dengue/epidemiologia , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Suscetibilidade a Doenças , Japão/epidemiologia , Sorogrupo , Simbiose , Wolbachia/genética , Wolbachia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...